

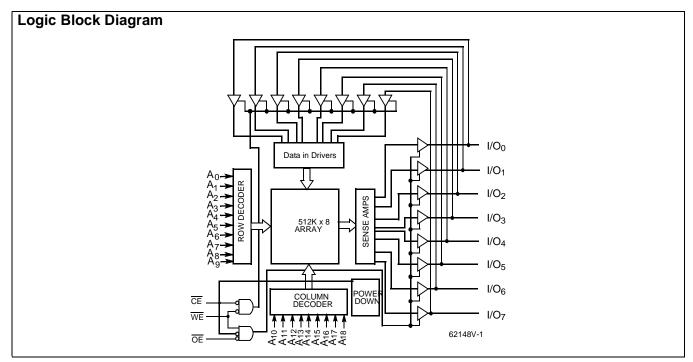
512K x 8 MoBL Static RAM

Features

- Low voltage range: —2.7V–3.6V
- Ultra low active power
- · Low standby power
- TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- · CMOS for optimum speed/power

Functional Description

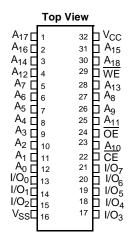
The CY62148V is a high-performance CMOS static RAM organized as 524,288 words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL™) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling.

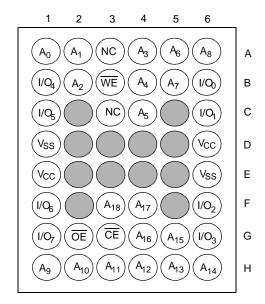

The device can be put into standby mode when deselected $(\overline{CE} \text{ HIGH})$.

Writing to the device is <u>accomplished</u> by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. Data on the eight I/O pins $(I/O_0$ through I/O_7) is then written into the location specified on the address pins $(A_0$ through A_{18}).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable ($\overline{\text{WE}}$) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW and WE LOW).


The CY62148V is available in a 36-ball FBGA, 32 pin TSOPII, and a 32-pin SOIC package.



Pin Configurations

TSOPII/SOIC

FBGA Top View

62148V-2

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......55°C to +125°C

DC Voltage Applied to Outputs in High Z State $^{[1]}$ –0.5V to $\rm V_{CC}$ + 0.5V

Supply Voltage to Ground Potential.....-0.5V to +4.6V

DC Input Voltage ^[1]	–0.5V to V_{CC} + 0.5V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Industrial	–40°C to +85°C	2.7V to 3.6V

Product Portfolio

						Power Dis	sipation (In	dustrial)
Product	V _{CC} Range			Operating (I _{CC})		Standby (I _{SB2})		
	Min.	Typ. ^[2]	Max.	Speed	Typ. ^[2]	Maximum	Ty.p ^[2]	Maximum
CY62148V	2.7V	3.0V	3.6V	70 ns	7	15 mA	2 μΑ	20 μΑ

- 1. $V_{IL(min.)} = -2.0V$ for pulse durations less than 20 ns.
- 2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ.)}$, $T_A = 25^{\circ}C$.

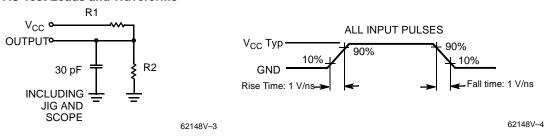
Electrical Characteristics Over the Operating Range

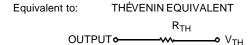
						CY62148V	1	
Parameter	Description	Test Condit	ions		Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	$V_{CC} = 2$.7V	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2$	7V			0.4	V
V _{IH}	Input HIGH Voltage		$V_{CC} = 3$.6V	2.2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage		$V_{CC} = 2$	7V	-0.5		0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$			-1	<u>+</u> 1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_{O} \leq V_{CC}, Output$ Disabled			-1	<u>+</u> 1	+1	μΑ
I _{CC}	V _{CC} Operating Supply Current	I _{OUT} = 0 mA, (f = f _{MAX} = 1/t _{RC}) CMOS Levels	$f_{MAX} = 1/t_{RC}) CMOS$			7	15	mA
		$I_{OUT} = 0 \text{ mA}, f = 1 \text{ MHz}$	CMOS Le	vels		1	2	mA
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$, $f = f_{MAX}$				100	μА	
I _{SB2}	Automatic CE	$\overline{\text{CE}} \ge V_{\text{CC}} - 0.3V$		L		1	50	μΑ
	Power-Down Current— CMOS Inputs	$V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$, f = 0	V _{CC} = 3.6V	LL		2	20	μΑ

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V$	8	pF

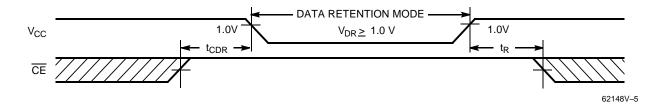
Thermal Resistance


Description	Test Conditions	Symbol	Others	BGA	Units
Thermal Resistance ^[3] (Junction to Ambient)	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	TBD	TBD	°C/W
Thermal Resistance ^[3] (Junction to Case)		$\Theta_{\sf JC}$	TBD	TBD	°C/W


Note:

^{3.} Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms


Parameters	3.0V	Unit
R1	1105	Ohms
R2	1550	Ohms
R _{TH}	645	Ohms
V_{TH}	1.75V	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions		Min.	Typ. ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			1.0		3.6	V
I _{CCDR}	Data Retention Current	$\frac{V_{CC}}{2} = 1.0V$	L/ LL		0.2	5.5	μΑ
		$\begin{split} &\frac{V_{CC}}{\text{CE}} = 1.0\text{V} \\ &\text{CE} \geq V_{CC} - 0.3\text{V}, \\ &V_{IN} \geq V_{CC} - 0.3\text{V or} \\ &V_{IN} \leq 0.3\text{V} \\ &\text{No input may exceed} \\ &V_{CC} + 0.3\text{V} \end{split}$					μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time			0			ns
t _R ^[4]	Operation Recovery Time			t _{RC}			ns

Note:

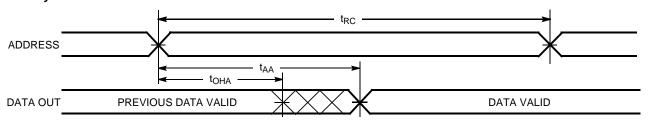
Data Retention Waveform

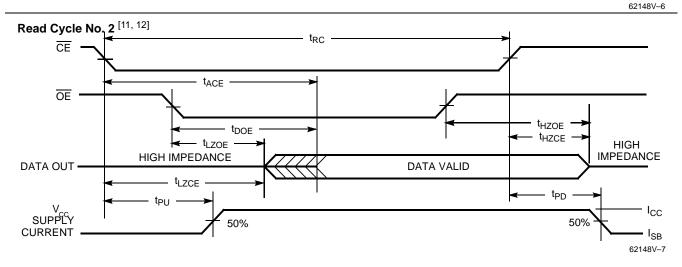
^{4.} Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 10 \,\mu s$ or stable at $V_{CC(min.)} \ge 10 \,\mu s$.

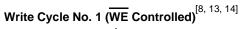
Switching Characteristics Over the Operating Range^[5]

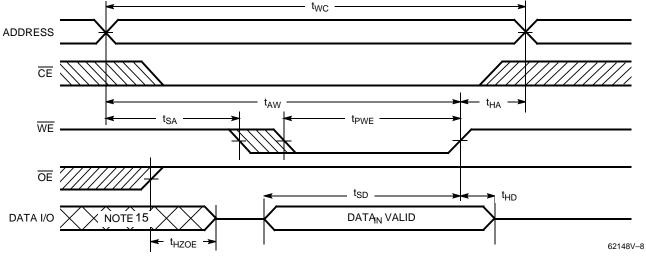
		(2.7V Oper	/–3.6V ration)		
Parameter	Description	Min.	Max.	Unit	
READ CYCLE		·			
t _{RC}	Read Cycle Time	70		ns	
t _{AA}	Address to Data Valid		70	ns	
t _{OHA}	Data Hold from Address Change	10		ns	
t _{ACE}	CE LOW to Data Valid		70	ns	
t _{DOE}	OE LOW to Data Valid		35	ns	
t _{LZOE}	OE LOW to Low Z ^[6]	5		ns	
t _{HZOE}	OE HIGH to High Z ^[7]		25	ns	
t _{LZCE}	CE LOW to Low Z ^[6]	10		ns	
t _{HZCE}	CE HIGH to High Z ^[6, 7]		25	ns	
t _{PU}	CE LOW to Power-Up	0		ns	
t _{PD}	CE HIGH to Power-Down		70	ns	
WRITE CYCLE ^[8, 9]	·				
t _{WC}	Write Cycle Time	70		ns	
t _{SCE}	CE LOW to Write End	60		ns	
t _{AW}	Address Set-Up to Write End	60		ns	
t _{HA}	Address Hold from Write End	0		ns	
t _{SA}	Address Set-Up to Write Start	0		ns	
t _{PWE}	WE Pulse Width	50		ns	
t _{SD}	Data Set-Up to Write End	30		ns	
t _{HD}	Data Hold from Write End	0		ns	
t _{HZWE}	WE LOW to High Z ^[6, 7]		25	ns	
t _{LZWE}	WE HIGH to Low Z ^[6]	10		ns	

Notes:


- 5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance.


- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±200 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. The minimum write cycle time for Write Cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}. 8.




Switching Waveforms

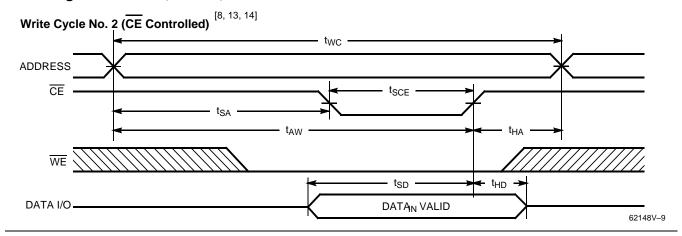
Read Cycle No. 1^[10, 11]

Notes:

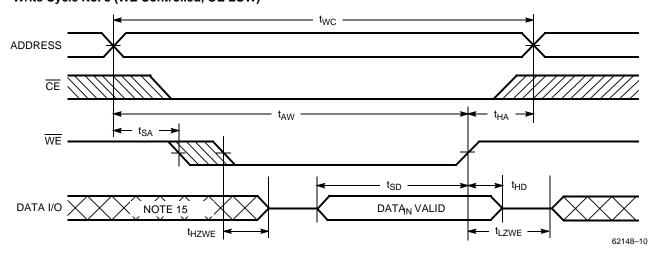
- 10. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.

 11. WE is HIGH for read cycle.

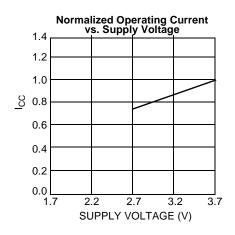
 12. Address valid prior to or coincident with \overline{CE} transition LOW.

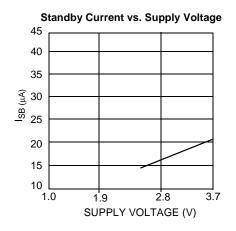

 13. Data I/O is high impedance if $\overline{OE} = V_{IH}$.

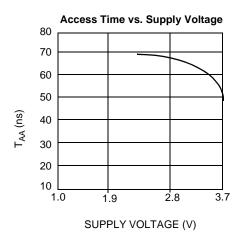
 14. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.


 15. During this period, the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)





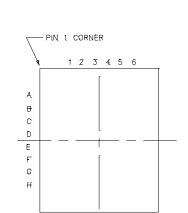


Typical DC and AC Characteristics

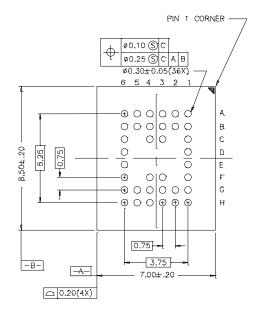
Truth Table

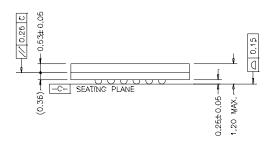
CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Output Disabled	Active (I _{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62148VLL-70BAI	BA37	36-Ball Fine Pitch BGA	Industrial
	CY62148VLL-70ZI	ZS32	32-Lead TSOPII	
	CY62148VLL-70SI	S34	32-Lead 450 mil. molded SOIC	

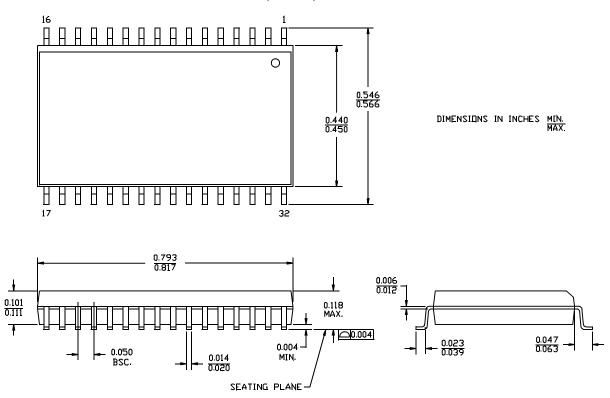
BOTTOM VIEW




Package Diagrams

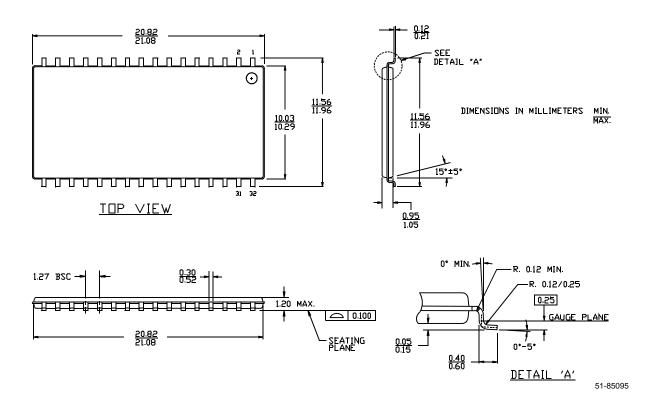
36-Ball (7.00 mm x 8.5 mm x 1.5 mm) Thin BGA BA37

TOP VIEW


51-85105-A

* THE BALL DIAMETER, BALL PITCH, STAND-OFF & PACKAGE THICKNESS ARE DIFFERENT FROM JEDEC SPEC M0192 (LOW PROFILE BGA FAMILY)

Package Diagrams (continued)


32-Lead (450 MIL) Molded SOIC S34

Package Diagrams (continued)

32-Lead TSOP II ZS32

Document Title: CY62148V MoBL™ 512K x 8 MoBL Static RAM Document Number: 38-05070					
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	107263	09/15/01	SZV	Change from Spec number: 38-00646 to 38-05070	